Modeling the effects of positive and negative feedback in kidney blood flow control.

نویسندگان

  • Runjing Liu
  • Anita T Layton
چکیده

Blood flow in the mammalian kidney is tightly autoregulated. One of the important autoregulation mechanisms is the myogenic response, which is activated by perturbations in blood pressure along the afferent arteriole. Another is the tubuloglomerular feedback, which is a negative feedback that responds to variations in tubular fluid [Cl(-)] at the macula densa.(1) When initiated, both the myogenic response and the tubuloglomerular feedback adjust the afferent arteriole muscle tone. A third mechanism is the connecting tubule glomerular feedback, which is a positive feedback mechanism located at the connecting tubule, downstream of the macula densa. The connecting tubule glomerular feedback is much less well studied. The goal of this study is to investigate the interactions among these feedback mechanisms and to better understand the effects of their interactions. To that end, we have developed a mathematical model of solute transport and blood flow control in the rat kidney. The model represents the myogenic response, tubuloglomerular feedback, and connecting tubule glomerular feedback. By conducting a bifurcation analysis, we studied the stability of the system under a range of physiologically-relevant parameters. The bifurcation results were confirmed by means of a comparison with numerical simulations. Additionally, we conducted numerical simulations to test the hypothesis that the interactions between the tubuloglomerular feedback and the connecting tubule glomerular feedback may give rise to a yet-to-be-explained low-frequency oscillation that has been observed in experimental records.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathological and Doppler Ultrasonographic Study of Kidney Hemodynamic Response in Saffron (Crocus Sativua) Pretreated Rats

Objective-  To evaluate kidney hemodynamic response including blood flow velocity in segmental arteries shortly after administration of various dose of saffron extract (10, 40 and 90 mg/kg).   Design- Technical assessment, experimental study.   Animals- 20 healthy male Sprague-Dawley rats.   Procedures- In this study, using a real-time pulsed doppler analysis, kidney hemodynamic response inc...

متن کامل

Protective effects of piperine on lead acetate induced-nephrotoxicity in rats

Objective(s): In this study, we investigated the protective effects of piperine on lead acetate-induced renal damage in rat kidney tissue. Materials and Methods: Forty male rats were divided into 5 groups: negative control (rats were given aquadest daily), positive control (rats were given lead acetate 30 mg/kg BW orally once a day for 60 days), and the treatment group (rats were given piperine...

متن کامل

Numerical Investigation of Angulation Effects in Stenosed Renal Arteries

Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...

متن کامل

A survey of intracranial blood flow velocity in thalassemia intermedia in Khuzestan Province, Iran

Background: Beta-thalassemia intermedia (BTI) is a type of hemoglobinopathy with an increased risk of cerebrovascular accidents, and transcranial cerebral Doppler ultrasonography (TCD) through determining the mean cerebral blood flow velocity (CBFV) can serve to predict the risk of a developing stroke. This study aims to compare patients with beta-thalassemia intermedia and healthy individuals ...

متن کامل

Mathematical modeling of blood flow in a stenosed artery under MHD effect through porous medium

In this investigation, a mathematical model for studying oscillatory flow of blood in a stenosed artery under the influence of transverse magnetic field through porous medium has been developed. The equations of motion of blood flow are solved analytically. The analytical expressions for axial velocity, volumetric flow rate, pressure gradient, resistance to blood flow and shear stress have been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical biosciences

دوره 276  شماره 

صفحات  -

تاریخ انتشار 2016